Year 5

Maths Overview

Year 5 Overview

Please note: The length of each unit has been given as a guide only. Use professional judgement to either extend or shorten units in line with the needs of pupils. The 'spare' weeks at the end of each term have been planned in to allow for this flexibility or give the opportunity to consolidate, revisit and reinforce.

Where units revisit objectives, use assessment data to inform planning.

SPRING TERM			
Wk 1	Wk $2 \times$ Wk 3	Wk $6 \times$ Wk 7	Wk 9×10
Number: Place value Round any number up to $1,000,000$ to the nearest 10 , $100,1,000,10,000$ and 100,000 Solve number problems and practical problems involving Y5 place value objectives.	Number: Fractions Compare and order fractions whose denominators are multiples of the same number. Identify, name and write equivalent fractions of a given fraction, represented visually including tenths and hundredths. Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements >1 as a mixed number [for example $2 / 5+4 / 5=6 / 5=11 / 5 \mathrm{]}$. Add and subtract fractions with the same denominator and denominators that are multiples of the same number. Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams. Read and write decimal numbers as fractions (for example $0.71=71 / 100$). Solve problems involving scaling by simple fractions and problems involving simple rates. (Number: Multiplication \& division)	Fractions: Decimals Read and write numbers with up to three decimal places. Order and compare numbers with up to three decimal places. Recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents. Round decimals with two decimal places to the nearest whole number and to one decimal place. Solve problems involving number up to three decimal places. Multiply and divide decimal numbers by 10, 100 and 1000. (Number: Multiplication \& division)	Fractions: Percentages Recognise the per cent symbol (\%) and understand that per cent relates to 'number of parts per hundred'. Write percentages as a fraction with denominator 100, and as a decimal. Solve problems which require knowing percentage and decimal equivalents of $1 / 2,1 / 4,1 / 5,2 / 5$, $4 / 5$ and those fractions with a denominator of a multiple of 10 or 25

SUMMER TERM											
Wk 1 Wk 2	Wk 3	Wk 4 Wk 5	Wk 6	Wk 7	Wk 8	Wk 9	Wk 10	Wk 11	Wk 12	Wk 13	Wk 14
Geometry: Properties of shapes Identify 3D shapes, including cubes and other cuboids, from 2D representations. Use the properties of rectangles to deduce related facts and find missing lengths and angles. Distinguish between regular and irregular polygons based on reasoning about equal sides and angles.	Geometry: Position \& direction Identify, describe and represent the position of a shape following reflection and use the appropriate language: know that the shape has not changed after reflection Identify, describe and represent the position of a shape following translation and use the appropriate language: know that the shape has not changed after reflection	Number: Four operations (addition, subtraction, multiplication \& division) Add whole numbers with more than 4 digits, including using formal written methods (columnar addition) Subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction). Solve addition and subtraction multi- step problems in contexts deciding which operations and methods to use and why. Multiply numbers up to 4 digits by a one digit number using a formal written method. Multiply numbers up to 4 digits by a two digit number using a formal written method (long multiplication). Divide numbers up to 4 digits by a one digit number using the formal written method of short division. Interpret remainders (after division) appropriately for the context. Solve problems involving addition and subtraction, multiplication and division and a combination of these, including understanding the use of the equals sign. Solve problems involving scaling by simple fractions and problems involving simple rates.	Measues: Converting units Convert between different units of metric measure (for example, km and m; cm and m; cm and $\mathrm{mm} ; \mathrm{g}$ and kg ; l and ml). Understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints. Solve problems involving converting between units of time.			Measures and Area Measure the perim composite shapes in Calculate the area (including including units, cm^{2} the area o shapes.	rimeter calculate of tilinear and m. compare ctangles ares), and g standard 2 estimate egular	Measure Estimate example blocks to (includin capacity using wa Use all four to solve involving length, m money) notation scaling.	olume lume (for ng $1 \mathrm{~cm}^{3}$ ild cuboids ubes) and example,). operations blems easure (e.g , volume, decimal cluding	Opportunity to consolidate, revisit and reinforce	

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Count forwards and backwards with positive and negative whole numbers, including through 0 . Interpret negative numbers in context	- Find the missing numbers in the sequences: $5,4,3,2,1,0$, , -2 , _ $8,6,4,2,0, \ldots,-4$,, - Charlie recorded the temperature at 7 am each morning in a table. Which was the warmest/ coldest day? What was the difference between the warmest and coldest day? Order the temperatures from coldest to warmest. - Katie looked at the thermometer. She said '3 hours ago it was $5^{\circ} \mathrm{C}$ warmer.' What was the temperature earlier in the day?	- Anna is counting down from 11 in fives. Does she say -11? Explain your reasoning. - Harris is finding the missing numbers in this sequence. \qquad , 5 , \qquad , -5 He writes down: $15,10,5,0,-0,-5$ Explain the mistake Harris has made. - Sam counted down in 3's until he reached -18. He started at 21. What was the tenth number he said?	- Fred is a police officer. He is chasing a suspect on Floor 5 of an office block. The suspect jumps into the lift and presses -1 . Fred has to run down the stairs, how many flights must he run down? - Use the picture below to answer the following questions. Can they make up their own questions? What number should be where the light shines from the lighthouse? How far is it down from the (head of the) seagull to the (mouth of the) yellow fish? There's a little brown seahorse to the right of the lighthouse support. How far from the surface is it?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Round any number up to 1000000 to the nearest 10,100 , 1000, 10000 and 100000	- Round the following numbers to the nearest a) 10 b) 100 c) 1000 4821, 69243, 2781 - In 2013, there were 778803 births in the UK. What is this to the nearest 1000? Nearest 10000? Nearest 100000? - In July 2015, the population of the UK was estimated to be 64881609. What is this rounded to the nearest million?	- A number rounded to the nearest 1000 is 54000. What is the largest possible number this could be? - Round the number 259996 to the nearest 1000. Round it to the nearest 10000. What do you notice about the answers? Can you think of 3 more numbers where the same thing would happen? - True or False? All numbers with a five in the tens column will round up when rounded to the nearest 100 and 1000 .	- Nathan thinks of a number. He says 'My number rounded to the nearest 10 is 1150 , rounded to the nearest 100 is 1200 and rounded to the nearest 1000 is 1000.' What could Nathan's number be? - Roll five dice; make as many 5 digit numbers as you can from them. Round each number to the nearest 10, 100, 1000 and 10,000 . From your numbers, how many round to the same 10, 100, 1000 or 10,000 ? - In pairs, take it in turns to roll (if rounding to 10) two 0-9 dice. Create a number from it and choose where it rounds to. Record on a sheet like below. When the circle is filled, whoever filled it, gets a point.

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Read Roman numerals to $1000(\mathrm{M})$ and recognise years written in Roman numerals.	- Translate these Roman Numerals: 1. MD 2. MCD 3. CXVI 4. DCLX - Write the numbers in Roman Numerals: 1. 35 4. 283 2. 100 5. 570 3. 99 - Complete these calculations: 1. $\mathrm{CD}+\mathrm{DC}=$ 2. $\mathrm{VI}+\mathrm{IV}=$ 3. $C X+X C$	- Count in hundreds and fill in the pattern: $\mathrm{C}, \mathrm{CC}, \quad, \quad, \mathrm{D}, \quad, \quad, \quad, \quad,$ Explain what each letter means and write the translation below each letter. - Arrange the numbers in size order: XXXV, XL, XXX, LX, LV, L, XLV, LXV Explain how you ordered the numbers. - Complete the calculations. Show how you translated the roman numerals and added them. 1. $X I+I X=$ 2. $X L+L X=$ 3. $C M+M C=$	- What is the longest number between 1 and 1000 when depicted in Roman Numerals? - Find 2 words that are also numbers in Roman Numerals (one is very short). - Work out the year of your birth in Roman Numerals. Work out the current year in Roman Numerals. Can you find the difference?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Add numbers mentally with increasingly large numbers. Subtract numbers mentally with increasingly large numbers.	- Work out this missing numbers: $\begin{array}{r} \boxed{-\quad}-92=145 \\ 740+\ldots=1039 \\ =580-401 \end{array}$ - Peter bought boxes of crisps when they were on offer. After 12 weeks, his family had eaten 513 packets and there were 714 left. How many did he buy? - Children follow a series of instructions to find a mystery number. Eg Start with 100. Add 5000. Take away 400. Add 20. Subtract 750. What number have you got?	- Rachel has $£ 10$. She spends $£ 6.49$ at the shop. Would you use columnar subtraction to work out the answer? Explain why. - True or False? Are these number sentences true or false? $8.7+0.4=$ 8.11 $6.1-0.9=5.2$ Give your reasons. - Which of the following questions are easy and which ones are hard? $\begin{array}{r} 213323-10= \\ 512893+300= \\ 819354-200= \\ 319954+100= \end{array}$ Explain why you think the hard questions are hard.	- If 2541 is the answer, what's the question? - Can you create three addition sums? - Can you create three subtraction sums? - Did you use a strategy? - Using 0-9 dice roll 3 at the same time to create a number. Your partner needs to do the same. - Who can add them together correctly first? - Who can subtract the smallest from the largest correctly first? Use a calculator to check. - Kangchenjunga is the third highest mountain in the world at 28,169 feet above sea level. Lhotse is the fourth highest at 27,960 feet above sea level. Find the difference in heights mentally.

National Curriculum Statement	All students		
	Fluency	Reasoning	Problem Solving
Add whole numbers with more than 4 digits, including using formal written methods (columnar addition) Subtract whole numbers with more than 4 digits, including using formal written methods (columnar subtraction)	- Calculate: $\begin{aligned} & 1638+2517 \\ & 4023-2918 \end{aligned}$ - Julie has 1578 stamps, Heidi has 2456 stamps. How many stamps do they have altogether? Show how you can check your answer using the inverse. - Adam earns $£ 37,566$ pounds a year. His wife, Sarah, earns £22,819 a year. How much do they earn altogether? They have to pay $£ 7887$ income tax per year, how much are they left with after this is taken off?	- There are mistakes in the following calculations. Explain the mistake and then make a correction to find the correct answer. $\begin{array}{cc} \left.\begin{array}{cc} 2451 & 782 \\ +\frac{562}{8071} & \frac{-435}{353} \\ \bullet & - \\ \hline \end{array}\right]+3475=6 _24 \end{array}$ What numbers go in the boxes? What different answers are there? Convince me. - A five digit number and a four digit number have a difference of 4365 . Give me three possible pairs of numbers.	- Find the missing numbers in these calculations. - My answer is 5398 , what's the question? - Create of 3 addition sums. - Create 3 subtraction sums. - Did you use a strategy? Explain it.

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.	- A car showroom reduces the price of a car from $£ 18750$ to £14999. By how much was the price of the car reduced? Circle the most sensible answer: £3249, £4001, £3751 - A games console costs £245. Mike pays for this in 5 equal payments. To the nearest ten pounds, how much does he pay per payment? - A coach holds 78 people. 960 fans are going to a gig on the coaches. How many coaches are needed to transport the fans?	- Which of these number sentences have an answer that is between 0.6 and 0.7 ? $\begin{aligned} & 11.48-10.86= \\ & 53.3-52.75= \end{aligned}$ - Always, sometimes, never When you add up four even numbers, the answer is divisible by four. - Martin is measuring his room for a new carpet. It has a width of 2.3 m and a length of 5.1 m . He rounds his measurements to the nearest metre. Will he have the right amount of carpet? Explain your reasoning.	- True or false. 4999-1999 = 5000-2000 Explain how you know using a written method. - There are 1231 people on an aeroplane. 378 people have not ordered an inflight meal. How many people have ordered the inflight meal? Give your answer to the nearest hundred. The inflight meal costs £1.99 per person. The cabin crew have collected £1100 pounds so far. How much more money do they need to collect? Round your answer to the nearest pound.

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Multiply and divide numbers mentally drawing upon known facts.	- $8 \times 6=48$. Use this to help you find the answers to the number sentences: $48 \div 6=$ $6 \times 80=$ - Write down five multiplication and division facts that use the number 48. - If I know $8 \times 36=288$, I also know $8 \times 12 \times 3=288$ and $8 \times$ $6 \times 6=288$. If you know $9 \times 24=216$, what else do you know?	- How can you use 10×7 to help you find the $9^{\text {th }}$ multiple of 7 ? - Find the answer: $\begin{array}{ll} 2 \times 11= & 4 \times 11= \\ 2 \times 12= & 4 \times 12= \\ 2 \times 13= & 4 \times 13= \end{array}$ What is the connection between the results for the two times table and the four times table? If $2 \times 144=288$, what is 4 times 144? - To multiply a number by 25 you multiply by 100 and then divide by 4 . Use this strategy to solve. $\begin{aligned} & 84 \times 25 \\ & 28 \times 25 \\ & 5.6 \times 25 \end{aligned}$	- 40 cupcakes cost $£ 3.60$, how much do 20 cupcakes cost? How much do 80 cupcakes cost? How much do 10 cupcakes cost? - If $8 \times 24=192$, how many other pairs of numbers can you write that have the product of 192 ? - 10 times a number is 4350 , what is 9 times the same number? Explain your working.

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Divide numbers up to 4 digits by a one digit number using the formal written method of short division Interpret remainders appropriately for the context.	- Calculate $\begin{aligned} & 68 \div 4= \\ & 1248 \div 3= \end{aligned}$ - Find the missing numbers: \qquad x $5=475$ $3 \times$ \qquad $=726$ - 194 pupils are going on a school trip. One adult is needed for every 9 pupils. How many adults are needed?	- What number goes in the box? $323 x _\ldots 1=13243$ Prove it. - Correct the errors in the calculation below. Explain the error. $266 \div 5=73.1$ - Andrew says that the answer to 166 divided by 4 can be written as '46 remainder 2' or as '46.5'. Do you agree? Explain your reasoning.	- The answer to the division has no remainders. Find the missing numbers. - I am thinking of a number. When it is divided by 9 , the remainder is 3 . When it is divided by 2 , the remainder is 1 . When it is divided by 5 , the remainder is 4 . What is my number? - When 59 is divided by 5 , the remainder is 4 When 59 is divided by 4 , the remainder is 3 When 59 is divided by 3 , the remainder is 2 When 59 is divided by 2 , the remainder is 1 Can you find the smallest number with the property that when it is divided by each of the numbers 2 to 10, the remainder is always one less than the number it is has been divided by?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	Write down: - The first 5 multiples of 8 . - All the factors of 20 . - Find a common factor of 36 and 12.	- Rob and James are talking about multiples and factors. Rob says ' 0 is a multiple of every whole number.' James says ' 0 is a factor of every whole number.' Who is correct? - Explain why 6 is a common factor of 18 and 24. - Tom says 'Factors come in pairs, so all numbers have an even number of factors.' Do you agree? Explain your reasoning.	- Polly is planting potatoes in her garden. She has 24 potatoes to plant and she will arrange them in a rectangular array. List all the different ways that Polly can plant her potatoes. - Sally is thinking of a number. She says 'My number is a multiple of 3 . It is also 3 less than a multiple of 4 .' Find three different numbers that could be Sally's number. - Clare's age is a multiple of 7 and 3 less than a multiple of 8 . How old is Clare?

	Establish whether a number up to 100 is prime and recall prime numbers up to 19	- Fill in the missing prime numbers - Find all the prime numbers between 60 and 80 . - What is the $16^{\text {th }}$ prime number?	- Fill in the missing numbers so that the calculation creates a prime number. $19-\square=\square$ Is this the only option? Andy says, I subtracted an odd number to find a prime number. Is this possible? How many ways could he have done this? Explain your answer. - What number am I? I am a prime number. I am a 2 digit number. Both my digits are the same. Explain why there is only one option.	- On a set of flashcards, write a different number on each. Ask a partner to do the same. Shuffle them and take half each. Take turns to turn them over. Say either 'prime' or 'not prime' when a number is turned over. Whoever ends with the most cards, wins. - Prime factors are the prime numbers that multiply together to make a number e.g. Is it possible to make every number by multiplying prime numbers together?

	National Curriculum Statement	All Students ${ }^{\text {a }}$ A ${ }^{\text {a }}$				
		Fluency			Reasoning	Problem Solving
	Multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams.	- Complete the table:			- Tony says, "When I	- Abi says, "This diagram
		Multiplication	Improper fraction	Mixed number	whole number I turn the whole number into a	passed their swimming test in a Year 5 class one week. The
		$3 \times \frac{4}{7}$	$\frac{12}{7}$		fraction by adding $-\frac{\text { to it, }}{1}$, for example, $2 \times \frac{6}{8}$	exact same data was collected from six other schools."
		$2 \times \frac{5}{8}$			Does this make a	
		$6 \times \frac{3}{9}$			Explain why.	
		- Use the dia answer. $3 \times \frac{2}{3}$	gram to find		multiplying a fraction by a whole number but multiplying a mixed number confuses me."	fraction and a mixed number. - Multiply these mixed numbers by 3 and place them in order from
		 Draw a diag 3	ram to repr	ent	Can you write a set of instructions to help her understand? Include an example in your explanation.	$2 \frac{3}{5}, 2 \frac{6}{8}, 2 \frac{3}{7}, 2 \frac{1}{6}$ Did you think they would be in that order? Discuss why.

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Solve comparison, sum and difference problems using information presented in a line graph.	Use the line graph to answer the following questions: - What was the highest/lowest temperature? What time did they occur? - What is the difference between the highest and lowest temperature? - How long did the temperature stay at freezing point or less?	Use the line graph to answer the following questions: - How long did it take for the pulse rate to reach the highest level? Explain using the graph to help. - When do you think the person stopped exercising? Convince me. - Estimate what the pulse rate was after 2 and a half minutes. How did you get an accurate estimate?	- Carry out your own exercise experiment and record your heart rate on a graph like the one shown. How does it compare? - Here is a line graph showing a bath time. Can you write a story to explain what is happening in the graph? - Can you write a story for the three graphs below?

	National Curriculum Statement						All students		
							Fluency	Reasoning	Problem Solving
	Complete, read and interpret information in tables including timetables.						Use the timetable to the left to answer the following questions: - On the $06: 35$ bus, how long does it take to get from Shelf Roundabout to Bradford Interchange? - Can you travel to Woodside on the 07:43 bus? - Which journey takes the longest time between Shelf Village Hall and Bradford Interchange, the bus that leaves SVH at 06:46 or the bus that leaves SVH at 07:23?	Use the timetable to the left to answer the following questions: - If you needed to travel from Halifax Bus Station to Odsal and had to arrive by 08:20, which would be the best bus to catch? Explain your answer. - Which journey takes the longest time from Halifax Bus Station to Bradford Interchange? - Hannah works a 10 minute walk from Bradford Interchange. She has to start work at 08:00. She is on the 07:10 bus from Halifax which is running 5 minutes late. Will she make it to work on time? Explain your reasoning.	- Order the journey times on the timetable from longest to shortest. Can you explain why you think the buses take different lengths of time? - Three trains travel from Halifax to Leeds on the same morning. The Express leaves Halifax 10 minutes after the All Stations train, but arrives at Leeds 10 minutes before it. The All Stations takes 50 minutes to reach Leeds and arrives at 10:30. The Goods train leaves 20 minutes before the All Stations and arrives at Leeds 20 minutes after the Express. Work out the timetable. That is; what time does each train leave Halifax and what time does each train arrive at Leeds Station?
	Halifax Bus Station	06:05	06:35	07:10	07:43	08:15			
	Shelf Roundabout	06:15	06:45		07:59	08:31			
	Shelf Village Hall	06:16	06:46	07:23	08:00	08:32			
	Woodside	06:21	06:50	07:28					
	Odsal	06:26	06:55	07:33	08:15	08:45			
	Bradford Interchange	06:40	07:10	07:48	08:30	09:00			

	National Curriculum Statement	All Students		
		Fluency	Reasoning	Problem Solving
	Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles.	- If one angle in a triangle is 38° and another is 68°, what type of angle will the third be? - Tick all the obtuse angles - Which number is an angle? 79.4 -60 Explain why.	- Odd one out. 180° 45° 79° 225° Explain why. - Cut out a circle with a spinner in the centre. Put the arrow in the starting position above. Turn over a flash card with an angle on. Estimate the given angle by moving the spinner. Check how close you are.	- Estimate and measure the angles in these shapes. Record your results in a table. Work out how close you were. Did you notice anything or find any easier?

(Name 4 irregular 4 sided

C-	Identify, describe and represent the position of a shape following reflection, using the appropriate language, and know that the shape has not changed. Identify, describe and represent the position of a shape following translation, using the appropriate language, and know that the shape has not changed.	- A square is translated two dots to the right and three down. Draw the new square. - Draw the reflection of the triangle. - A triangle is translated 360°. Draw the new triangle.	- Amy draws triangle $A B C$ on the grid. She wants to translate the triangle so that point B becomes the co-ordinate $(3,1)$. Hazel says, Point A will become $(1,1)$ Do you agree? Explain why. - True or false? Reflecting a shape changes the dimensions.	- A rectangle is translated 3 squares up and two squares to the left. Three of the coordinates of the translated square are: $(5,7)(10,14)(10,7)$. What are the co-ordinates of the original rectangle? - A quadrilateral is drawn on a grid. It is translated so that point A becomes point B Draw the new triangle.

	Measure and calculate the perimeter of composite rectilinear shapes in cm and m .		- The length labelled ' x ' is a multiple of 1.8 What could ' y ' be? Explain to a partner why you have chosen these measurements. - Here is a square inside another square. The perimeter of the inner square is 16 cm . The outer square's perimeter is four times the size of the inner square. What is the length of one sides of the outer square? How do you know? What do you notice?	- Investigate the different ways you can make composite rectilinear shapes with a perimeter of 54 cm . - Amy and Ayesha are making a collage of their favourite football team. They want to make a border for the canvas. Here is the canvas. They have a roll of blue ribbon that is 245 cm long and a roll of red ribbon that is 2.7 m long. How much ribbon will they have left over?

	Calculate and compare the area of rectangles (including squares), and including using standard units, $\mathrm{cm}^{2}, \mathrm{~m}^{2}$ estimate the area of irregular shapes.	- Estimate and work out the area of these shapes. Find the unknown sides first. Were you close?	- Put these amounts in order starting with the smallest. $2.7 \mathrm{~m}^{2}$ $27 m^{2}$ $27000 \mathrm{~cm}^{2}$ How do you know? - Wiktoria says, The area of squares and square numbers are related. Do you agree? Explain why.	- Here is a square inside another square. The area of the inner square is $16 \mathrm{~m}^{2}$. The outer square's area is four times the size of the inner square. What is the length of one sides of the outer square? How do you know? - Investigate how many ways you can make different squares and rectangles with the same area of $84 \mathrm{~cm}^{2}$. What strategy did you use?

		Complete practically	Complete practically	Complete practicall
0 $\frac{1}{2}$ \vdots 0 0 1 1 0 0 0 2	Estimate volume [for example using 1 cm 3 blocks to build cuboids (including cubes)] and capacity [for example, using water]	- Here is a litre jug with some water in. Here is a glass that holds 300 ml . It also has some water in. Estimate how much liquid there is altogether.	- Here is one side of a cuboid. What could the whole cuboid look like? Investigate the different types with a partner.	- 1 litre is approximately equal to 1 and three quarter pints. Use this information to draw and work out how many pints are in 10 litres. (A bar model will help.)

- A tower is made of red and green cubes.
For every 1 red cube there are 2 green cubes.
Each cube has a height of 2.5 cm

The tower is 30 cm tall.
How many green cubes are in the tower?
2.5 cm

- The diagram is made up of two different sized rectangles.

For each large rectangle the length is double the width.
The length of the diagram is
60m.
Find the area of one of the small rectangles.

- The perimeter of the rectangle is 33 cm .

Ajay says,
Rounded to the nearest whole number the length of the rectangle is 13 cm .

Do you agree? Explain why.

- Here is a square with a equilateral triangle inside it.

The perimeter of the triangle is 54 cm
Find the perimeter of the square.

- Ellie, Shauna and Megan receive their pocket money on a Friday.

Shauna receives two times more than Ellie receives.

Megan receives $£ 5$ more than Shauna receives.

Altogether, their mum hands out £22.50

How much money do they each receive?
(A bar model will help.)

- Lollies are sold in two sizes, small and large.

Sanjay buys two small lollies for 92p Jenny buys 5 small lollies and 3 large lollies and pays with a $£ 10$ note. Jenny receives $£ 4.16$ change. How much does one large lolly cost?

