Year 4

Maths Overview

*MathsHUBS
White Rose

Year 4 Overview

Please note: The length of each unit has been given as a guide only. Use professional judgement to either extend or shorten units in line with the needs of pupils. The 'spare' weeks at the end of each term have been planned in to allow for this flexibility or give the opportunity to consolidate, revisit and reinforce.

Where units revisit objectives, use assessment data to inform planning.

SPRING TERM			
Wk 1 Wk 2 Wk 3	Wk $4 \times$ Wk 5	Wk $6 \times$ Wk 7 \% ${ }^{\text {W }} 8$	Wk 9×10
Number: Fractions Recall multiplication and division facts for multiplication tables: $2,3,4,5,8$ \& 10 (covered in previous year groups) Recall multiplication and division facts for multiplication tables: 6, 7, 9, 11 and 12 (new to year 4) Recognise and show, using diagrams, families of common equivalent fractions. Count up and down in hundredths Recognise that hundredths arise when dividing an object by one hundred and dividing tenths by ten. Solve problems involving increasingly harder fractions to calculate quantities, and fractions to divide quantities, including nonunit fractions where the answer is a whole number. Add and subtract fractions with the same denominator.	Measures: Time Convert between different units of measure (hours, minutes, seconds) Read, write and convert time between analogue and digital 12 and 24 hour clocks. Solve problems involving converting from hours to minutes; minutes to seconds; years to months; weeks to days.	Number: Decimals Recognise and write decimal equivalents of any number of tenths or hundredths. Recognise and write decimal equivalents to $1 / 4,1 / 2,3 / 4$ Find the effect of dividing a one or two digit number by 10 or 100 , identifying the value of the digits in the answer as ones, tenths and hundredths. Round decimals with one decimal place to the nearest whole number. Compare numbers with the same number of decimal places up to two decimal places. Order numbers with the same number of decimal places up to two decimal places.	Measures Convert between different units of measure: mass (kg/g) and capacity/volumn (l/ml) Convert between different units of measure: height/length ($k m, m, c m$, mm) Estimate, compare and calculate different measures, including money in pounds and pence. Solve simple measure and money problems involving fractions and decimals to two decimal places. (From Number: Fractions)

SUMMER TERM													
Wk 1	Wk 2	Wk 3	Wk 4	Wk 5	Wk 6	Wk 7	Wk 8	Wk 9	Wk 10	Wk 11	Wk 12	Wk 13	Wk 14
Number: Place value Count in multiples of 25 and 1000. Count in multiples of 6 Count in multiples of 7 Count in multiples of 9 Count backwards through zero to include negative numbers. Order and compare numbers beyond 1000. Round any number to the nearest 10,100 or 1000. Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value. Solve number and practical problems that involve all of the above and with increasingly large positive numbers.	Geom shapes Identif angles Compa to two Compa geome quadri based sizes. Identif 2D sha differe Compl figure specific	try: Pro acute re and right an re and tric shap ateral s on their lines o pes pres nt orien te a sim with res line of	perties and obt rder an gles by lassify pes, incl and tria propert symm ented i tations. ple sym pect to symme	gles up size. uding ngles, ies and try in n metric ry.	Geomet \&Direct Describe 2D grid in the fir Describe between translati unit to t and up/ Plot spe and draw complet polygon	osition itions on a ordinates uadrant. vements itions as of a given ft/ right n.	Statistics Interpret discrete (counted) appropria methods: Interpret continuous measure/ using app graphical graphs. Solve com and differ problems informati in bar cha pictograms other gra	present number using aphical charts present g. data ate ods: time ison, sum resented bles and	Number: Addition Add numbers with columnar addition Subtract numbers of columnar subtra Use inverse operati Solve addition and which operations a Recall multiplicatio 5,8 \& 10 (covered Recall multiplicatio 11 and 12 (new to Recognise and use calculations. Multiply two-digit formal written layout. Divide two-digit an formal layout Solve problems inv distributive law to Solve integer scalin Solve harder corre to m objects.	ultiplication ng the for te. using th opriate wers to a step prob se and why cts for mu groups) cts for mu commuta umbers b bers by g and add number ms such	methods o tten metho exts, decid ables: 2, 3, ables: 6, 7, tal number us umber usin g using the are connec	Opportunity to consolidate, revisit and reinforce	

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
$\begin{aligned} & \underline{0} \\ & \underset{\sim}{\square} \\ & \vdots \\ & 0 \\ & \frac{0}{\square} \end{aligned}$	Count backwards through zero to include negative numbers	- Find the missing numbers in the sequences: $\begin{aligned} & 5,4,3,2,1,0,-,-2, \\ & 8,6,4,2,0,--4,- \\ & 10,6,2,-2,--10,- \end{aligned}$ - What temperature is 10 degrees below 3 degrees Celsius? - Fill in the empty boxes on the number line.	- Anna is counting down from 11 in fives. Does she say -11? Explain your reasoning. - Harris is finding the missing numbers in this sequence. $\rightarrow-5, \rightarrow-5$ He writes down: $15,10,5,0,-0,-5$ Explain the mistake Harris has made. - Sam counted down in 3's until he reached -18 . He started at 21. What was the tenth number he said?	- Fred is a police officer. He is chasing a suspect on Floor 5 of an office block. The suspect jumps into the lift and presses -1. Fred has to run down the stairs, how many flights must he run down? - Draw the new temperature on the thermometer after each temperature change: -In the morning it is 4 degrees, it drops 8 degrees. -In the afternoon it is 12 degrees Celsius, overnight it drops by 14 degrees. -It is 1 degree, it drops by 11 degrees.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{National Curriculum Statement} \& \multicolumn{3}{|c|}{All students} \\
\hline \& \& Fluency \& Reasoning \& Problem Solving \\
\hline \[
\begin{aligned}
\& \underline{\square} \\
\& \stackrel{\rightharpoonup}{\sigma} \\
\& > \\
\& 0 \\
\& 0 \\
\& \frac{\square}{\square}
\end{aligned}
\] \& Recognise the place value of each digit in a four digit number (thousands, hundreds, tens and ones) \& \begin{tabular}{l}
- Find the value of in each statement.
\[
=3000+500+40
\] \\
\(2000+\) + \(2=2702\) \\
\(+40+5=3045\) \\
- Write the value of the underlined digit.
\[
\underline{3} 462,5124,7024,472 \underline{0}
\] \\
- 1423 is made up of thousands, _hundreds, _ tens and _ ones.
\end{tabular} \& \begin{tabular}{l}
- Show the value of 5 in each of these numbers. \\
5462, 345, 652, 7523 \\
Explain how you know. \\
- Create 5 four digit numbers where the tens number is 2 and the digits add up to 9 . Order them from smallest to largest. \\
- How many different ways can you write 5340 ?
\end{tabular} \& \begin{tabular}{l}
- Claire thinks of a 4 digit number. The digits add up to 12. The difference between the first and fourth digit is 5 . What could Claire's number be? \\
- Use the clues to find the missing digits.

The thousands and tens digit multiply together to make 24. The hundreds and tens digit have a digit total of 9 . The ones digit is double the thousands digit. The whole number has a digit total of 18 .

- There are 4 number cards, A, B, C and D. They each have a four digit number on. Using the clues below, work out which card has which number.

3421, 1435, 3431, 1243

A has a digit total of 10 .

B and C have the same thousands digit. In C and D the tens and hundreds digits add up to 7 .

D has the largest digit total.
\end{tabular}

\hline
\end{tabular}

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
$\begin{aligned} & \underline{\partial} \\ & \underline{\partial} \\ & > \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$	Read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.	- Match the Arabic numeral to the correct Roman numeral. - Using the table above, fill in the missing Roman numerals. - Convert the Roman numeral into Arabic numerals. - XVII - XXIV -XIX	- Look at the multiples of 10 . Is there a pattern? What do you notice? - Bobby says "In the 10 times table, all the numbers have a zero. Therefore, in Roman numerals all multiples of 10 have an X." Is he correct? Prove it.	- Treasure huntComplete the trail by adding the Roman Numerals together as you go. - If you know 1-100 in Roman numerals can you guess the numbers up to 1000?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Use place value, known and derived facts to multiply by 0 and 1 Use place value, known and derived facts to divide by 1 Use place value, known and derived facts to multiply together three numbers.	- Fill in the missing numbers: $\begin{array}{r} \square \times 1=13 \\ 12 \times 0=\square \\ 3 \times 2 \times \square=18 \end{array}$ - Holly has 1 box of 12 eggs, how many eggs does she have? Sally has 0 boxes of 12 eggs, how many eggs does she have? Write these two questions as multiplication sentences.	- Always, sometimes, never An even number that is divisible by 3 is also divisible by 6 . - Harvey has written a number sentence. $13 \times 0=0$ He says, 'I can change one number in my number sentence to make a brand new multiplication.' Is he correct? Which number should he change? Explain your reasoning.	- Write the number 30 as the product of 3 numbers. Can you do it in different ways? - Try to reach the target number below by multiplying three of the numbers together. Cross out any numbers you don't use. Target number: 144 1 5

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit Solve integer scaling problems Solve harder correspondence problems such as n objects are connected to m objects.	- Harry buys 6 chocolate bars, one chocolate bar costs 54p. How much does Harry spend? a) Write a number sentence to represent the problem. b) Solve the problem.	- Miss Smith estimates $399 \times 60=240000$ Was she right to do that? Explain why. - In a box there are red and yellow cubes. For every 5 red cubes there are 3 yellow cubes. Hannah says ' If I have more than 10 red cubes, I will definitely have more than 10 yellow cubes.' Do you agree? Convince me.	- An ice cream sundae is made from one scoop of ice cream, one topping and one sauce. How many different ice cream sundaes can be created from 5 different flavours of ice cream, 3 different toppings and 4 different sauces?

\begin{tabular}{|c|c|c|c|c|}
\hline \& \multirow{2}{*}{National Curriculum Statement} \& \multicolumn{3}{|c|}{All students} \\
\hline \& \& Fluency \& Reasoning \& Problem Solving \\
\hline \& Recognise and show, using diagrams, families of common equivalent fractions. \& \begin{tabular}{l}
- Complete the statements:
\[
\overline{8}=\frac{1}{4}
\] \\
\(\stackrel{2}{=}=5\) \\
\(5_{3}^{-4}\) \\
- \(1 / 2\) is equivalent to 2 quarters. Write and draw three more fractions that are equivalent to a half. \\
- Draw diagrams to show fractions that are
\end{tabular} \& \begin{tabular}{l}
- A pizza is cut into 8 slices. Zara says, "If I take half of the pizza, and my brother takes 4 slices, we will both have the same amount " Is she correct? Convince me by using a diagram. \\
- Look at the three pictures. What's the same and what's different? \\
- Two paper strips are ripped. Which paper strip was originally the longest? Explain your answer. \\
\(\frac{1}{5}\)
\end{tabular} \& \begin{tabular}{l}
- Harry says, "3 is always the same as abreavs the same amount." \\
Use diagrams to show and prove your answer. \\
- Use the digit cards to fill in the boxes below. \\
1 \\
1 \\
2 \\
3 \\
5 \\
5 \\
6

$\square \square$

- Print the square below several times on a sheet. Children investigate the different ways they can show $\frac{1}{2} \frac{1}{4} \frac{1}{3} \frac{1}{6}$
\end{tabular}

\hline
\end{tabular}

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Add and subtract fractions with the same denominator.	- Calculate: Use diagrams and bar modelling to solve the problems below. $\begin{array}{ll} \frac{3}{8}+\frac{2}{8}= & \frac{1}{6}+\frac{2}{6}= \\ \frac{7}{8}-\frac{2}{8}= & \frac{5}{7}-\frac{2}{7}= \end{array}$ - Sarah eats $\frac{3}{-}$ of a bunch c grapes; Tom eats $\frac{2}{8}$ of a bunch of grapes. What fraction of the grapes have they eaten altogether? - Fill in the box: $\begin{aligned} & \frac{5}{8}+\square=\frac{7}{8} \\ & \frac{5}{6} \cdot \square=1 \frac{1}{6} \end{aligned}$	- The answer is $\frac{4}{9}$; what is the question? - True or False $\begin{aligned} & \frac{5}{12}+\frac{3}{12}=\frac{8}{12} \\ & \frac{5}{12}+\frac{3}{12}=\frac{8}{24} \\ & \frac{5}{12}+\frac{3}{12}=\frac{4}{6} \end{aligned}$ Explain your reasoning. - Describe the pattern: $\begin{aligned} & \frac{7}{10}-\frac{1}{10}=\frac{6}{10} \\ & \frac{6}{10}-\frac{1}{10}=\frac{5}{10} \end{aligned}$ Can you continue the pattern?	- Caroline chooses two fractions and subtracts the smaller one from the bigger one. Her answer was $\frac{1}{6}$. What fractions could Caroline have chosen? How many ways can you find to do it? - Find three ways to complete each calculation. \square $+\frac{\square}{\square}=\frac{8}{9}$ - Dan has 2 pieces of rope. One is $\frac{2}{8}$ of the whole rope and one is $\frac{2}{4}$. Dan adds $\frac{4}{6}$ to the first rope and $\frac{1}{4}$ to the second rope. Which rope is longer? Do you notice anything about the lengths of the ropes? $\frac{2}{8}$ \square

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Find the area of rectilinear shapes by counting squares.	- Find the area of these shapes: - A rectangle measures 5 squares long by 3 squares wide. What is the area of the shape? - Max is building a patio made of 24 square slabs. He has torn the paper with his design on. What would his complete design look like? Draw it on the grid.	- A shape has the area of $17 \mathrm{~cm}^{2}$. Could the shape be a rectangle? Explain your answer. - A rectangle measures 5 squares by 3 squares. Amy says 'The area must be 8 squares' Do you agree? Explain your thinking. - The area of any rectangle has an even number of squares. Do you agree? Prove it.	- A fourteen sided shape has an area of eight squares. Draw the shape on squared paper. - How many shapes can you draw that have an area of 8 square centimetres?

	National Curriculum Statement	All Students		
		Fluency	Reasoning	Problem Solving
	Convert between different units of measure: height/length (km, m, cm, mm)	```- Complete the statements: 100cm =``` \qquad ```m \\ \(1 \mathrm{~km}=\)``` \qquad ```m \\ \(1500 \mathrm{ml}=\)``` \qquad ```\(3.5 \mathrm{~kg}=\)``` \qquad ```g``` - Use the word and number cards to complete the statements. To change from cm to mm \qquad by \qquad To change from kg to g \qquad by _To change from ml to l \qquad by \qquad multiply 10 100 divide 1000 - Are these statements true or false? $1000 \mathrm{~m}=1 \mathrm{~km}$ $1000 \mathrm{~cm}=1 \mathrm{~m}$ $1000 \mathrm{ml}=1 \mathrm{l} 1000 \mathrm{~g}$ $=1 \mathrm{~kg} \mathrm{1000mg=1g}$	- The answer is 475 metres. What is the question? - Hamid says 'To convert kilometres to metres, add three zero's on to the end of the number.' Eg $2 \mathrm{~km}=2000 \mathrm{~m}$ Do yo u agree with Hamid? Explain why. - Laura is 2.72 m tall. She is 59 cm taller than her sister. How tall is her sister? Give your answer in centimetres. - Put these amounts in order starting with the largest. Half of 5 litres Quarter of 8 litres 700 ml Explain your thinking.	- A plank of wood is 4.6 m long. Two lengths are cut from the wood. 350 cm 2-m How much wood is left? - James and Sita do a sponsored walk for charity. They walk 1.2 km altogether. James walks double the amount that Sita walks. How far does Sita walk? They each raise 75p for every 100m they walk. How much money do they each make? James \qquad Sita \qquad

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Read, write \& convert time between analogue and digital 12 and 24 hour clocks.	- Read and write the following times in a) 24 hour clock b) 12 hour clock c) analogue e.g. Quarter past 2 in the afternoon: a) $14: 15$ b) $2: 15 \mathrm{pm}$ c) - Work out the problems and then draw the hands in the correct position on the analogue clocks. Paul sets off to London at 11:05am, the journey took 3 hours and 50 minutes. Draw the time he arrived on the clock. Clare finishes school at 15:25, she had her tea 1 hour and 40 minutes later. Draw the time she ate tea on the clock.	- Sam says 'To change any time after midday from 12 hour to 24 hour clock just add 12 to the minutes'. Is he correct? Can you explain his thinking? - Laura is writing the time 21:35 on the analogue clock below. - Can you make her time even more accurate? Explain your reasoning. - Three children are meeting in the park. Sam says we are meeting at 14:10. Laura says 'We are meeting ten to two. Emma says 'We are meeting at 2:10pm' - Will all the children meet at the same time? Convince me.	- Can you match the analogue clocks to the digital time even though one of the hands is missing? 14:45 8:15 20:55 - On a 24 hour digital clock, over 24 hours, how many times does the number 4 appear? - Does the number 4 appear more or less on a 12 hour digital clock or a 24 hour digital clock? - Can you match the time dominoes together so that the adjoining times are the same?

Fluency

- A box of chocolates costs $£ 1.25$. Hannah and Thomas want to buy 4 boxes of chocolates. If Hannah pays £2.45, how much must Thomas pay?

Solve simple measure and money problems involving fractions and decimals to two decimal places.

- Emma has five pounds. She spends a quarter of her money How much does she have left?

- In the sale I bought some clothes for half price.
Jumper £14 Scarf
Hat £2.50
T-shirt
£6.50
How much would the clothes have been full price?
How much did I spend altogether? How much did I save?

Reasoning

- A class is planning a trip to a theme park. Adult tickets cost $£ 8$. Children's tickets cost £4. How many tickets could they buy for £100. How many different ways can you find to do this?
- Hazel buys a teddy bear for £6.00, a board game for $£ 4.00$, a cd for $£ 5.50$ and a box of chocolates for $£ 2.50$. She has some discount vouchers. She can either get $£ 10.00$ off or half price on her items. Which voucher would save her more? Explain your thinking.
- Yasmin is choosing a new mobile phone. One phone costs $£ 5.50$ per month. The other costs $£ 65.50$ for a year. Which is the better deal over a year?

Problem Solving

- Kim bought a chocolate bar and a drink. The cost of them both together is in one of the boxes below.

$£ 1.85$	$75 p$	$£ 1.56$
$£ 1.74$	$£ 2.25$	$£ 1.00$
$£ 1.80$	$80 p$	$£ 2.10$
$£ 1.44$	$£ 3.06$	$£ 1.50$
$£ 1.20$	$£ 1.25$	$£ 1.60$
$£ 1.45$	$90 p$	$£ 1.27$

Using these five clues can you work out which price in the boxes is correct?

1. You need more than three coins to make this amount.
2. There would be change when using the most valuable coin to buy them.
3. The chocolate bar cost more than 50p
4. You could pay without using any copper coins
5. The chocolate bar cost exactly half the amount of the drink.

Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes.

- Label each of the triangles isosceles, scalene or equilateral.

- Match the quadrilaterals to their names.

Write down the properties of each of the shapes.

- Look at these shapes. What's the same? What's different? Can you name the shapes?

- Can you sort the shapes below into different groups?
Ask other children to see if they can label your groups and work out how you have sorted your shapes.

Can you add one more shape to each of your groups?
Can you name each shape?
Can you sort your shapes in a different way?

- Here is a square.

Inside the square is an equilateral triangle.
The perimeter of the triangle is 54 cm . Find the perimeter of the square.

- Can you fill in each of the boxes below with a different shape?

Can you name each shape?

	Has a right angle	Has no equal sides
Has 4 or more sides		
Has three sides		
Has an obtuse angle		

- Complete the shape with respect to
symmetric figure with respect to a specific line of symmetry.

- Reflect the shape in the mirror line

the line of symmetry.

- Shade in the squares to complete a symmetrical pattern.

- Prove that the shape below is not reflected correctly.

- Complete the shape to make a square and draw on the mirror line.

- Caroline thinks the shape will have 5 sides altogether when it is reflected in the mirror line.

Do you agree?
Prove it.

- How many different ways can you colour the squares below to create different symmetrical designs?

- Colour in extra squares to complete a symmetrical pattern.

c	Describe positions on a 2D grid as coordinates in the first quadrant.	- Write the co-ordinates of the coloured dots. - Draw the shapes on the co-ordinates given. - Write the co-ordinates of the ships on the map.	- Point A is marked on the grid. Henry says that point A is at $(5,8)$ Aisha says that point A is at $(8,5)$ Who is correct? Can you explain what mistake one of the children has made? - Junaid says: You can say either number first in co-ordinates, it doesn't matter. Do you agree with Junaid? Explain why.	- Can you place the letters below on the grid by following the rules? The letters at (1,1), $(1,2)$ and $(1,3)$ are all symmetrical about a vertical line. The letter at $(8,3)$ is not symmetrical and is made of straight and curved lines. The letters at $(1,1),(2,1)$ and $(5,1)$ are symmetrical about a horizontal line. The letter at $(5,1)$ consists of just straight lines. The letters at $(5,3)$ and $(2,0)$ consist of just curved lines. The letters at $(5,3),(5,2)$ and $(5,1)$ are consecutive in the alphabet. The letters at $(0,2)$ and $(1,2)$ are at the two ends of the alphabet.

Describe movements between positions as translations of a given unit to the left/ right and up/ down.

- Describe the movement of the orange square to the purple square.

- The coordinates of point A are $(3,2)$. Point B is 2 square left and 7 squares up from point A .

What are the co-ordinates of Point B?

Draw Point A and Point B on the grid.

- Describe the movement from the green circle to the red circle.

Describe the movement from the red circle to the green circle.
What do you notice about your descriptions?

- Keeley has described the movement of the orange circle to the green square as 3 squares to the left and 4 squares down.

Do you agree? Explain why.

- Write a set of instructions to move the red square to the purple square without going through any green squares.

- Write a set of instructions to move from the yellow circle to the purple circle while passing through all the other coloured circles.
Compare your instructions with a friend. How are they the same? How are they different?

Position and Direction
- Plot the points on the grid below to make a 2 d shape.

points and draw sides to complete a given polygon.
- Henry draws three points on a grid.

Aisha says 'You can make a square if you mark another point at $(8,10)$ '

Do you agree with Aisha?
Explain your answer.

- Here are the co-ordinates of corners of a rectangle which has width of 4 .

$$
(7,2) \text { and }(14,2)
$$

What are the other two co-ordinates?

- Plot the points given and join them to draw a letter of the alphabet.

$$
\text { Start: }(2,2) \rightarrow(2,8) \rightarrow(4,8)
$$

$\rightarrow(4,6) \rightarrow(6,6) \rightarrow(6,8) \rightarrow \quad(8$,

$$
\text { 8) } \rightarrow(8,2) \rightarrow(6,2) \rightarrow(6,4)
$$

$$
\rightarrow(4,4) \rightarrow(?, ?)
$$

What is the final co-ordinate needed to complete the letter?

- There are 12 points marked on the grid that are all corners of squares. Can you work out where the 4 squares are?
The purple dots are corners of more than one sauare.

Solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.

- Use the graph to answer the questions below.

How many more children walk to school than go on a bike? How many children were asked altogether?
How many children come to school on a car or a bus?

- Use the data in the table to answer the questions below.

Colour	Number of cars
Black	9
Red	10
Silver	7
Blue	14

How many cars were seen altogether?
Half of the cars were \qquad $-$
7 more cars were
\qquad than \qquad -
24 cars were \qquad and \qquad $-$

Three quarters of the cars were
\qquad and \qquad

- Class 2 are doing a survey.

They ask 20 children this question.
"How do you travel to school?"
Some results are shown in the pictogram.

The number of children who travel by car is half the number who walk to school.
Complete the pictogram.

- Here is a bar graph showing the same data as above.
Explain what mistake has been made.

- Year 4 are doing a survey.

They ask 20 people the question 'How many pets do you own?' The results are shown in this bar chart.

How many pets in total do these people own?

- Here is a graph with a result missing. Use the clues to complete the graph.

1. Find the difference between the

February and September temperatures.
2. Divide this by the difference between the November and March temperatures.
3. Now, add the difference between the April and October temperatures.

