Year 3

Maths Overview

"MathsHUBs
White Rose

Year 3 Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Wee		Week 14	Week 15
$\begin{aligned} & \text { n } \\ & \frac{n}{3} \\ & \frac{1}{3} \end{aligned}$	Number: Place Value		Number: Addition and Subtraction			Number: Multiplication and Division			Geometry: Properties of shapes		Measures: Time				Opportunity toconsolidate, revisit and reinforce	
$\begin{aligned} & \text { 을 } \\ & \text { in } \end{aligned}$	Mea Length Mass/	ures: height eight	Number: Subtraction		Number: Multiplicati on \& Division		Number: Fractions									
	Measures: Time		Measures: capacity, Money		Number: Fractions				Number: Addition \& Subtraction Multiplication \& division			Geometry Properties of shapes				

Please note: The length of each unit has been given as a guide only. Use professional judgement to either extend or shorten units in line with the needs of pupils. The 'spare' weeks at the end of each term have been planned in to allow for this flexibility or give the opportunity to consolidate, revisit and reinforce.

Where units revisit objectives, use assessment data to inform planning.

SPRING TERM				
Wk 1 Wk 2	Wk 3 Wk 4	Wk 5 Wk 6	Wk 7 Wk 8 Wk 9	Wk 10
Measures: Length \& height Mass/weight Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$) Measure the perimeter of simple 2D shapes. Measure, compare, add and subtract: mass (kg/g)	Number: Addition \& subtraction Add numbers mentally: - a three-digit number and ones Subtract numbers mentally: - a three-digit number and ones Add numbers mentally: - a three-digit number and tens Subtract numbers mentally: - a three-digit number and tens Add numbers mentally: - a three digit number and hundreds. Subtract numbers mentally: - a three digit number and hundreds. Add numbers with up to three digits, using formal written methods of columnar addition. Subtract numbers with up to three digits, using formal written methods of columnar subtraction. Estimate the answer to a calculation Use inverse operations to check answers Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction.	Number: Multiplication \& division Count from 0 in multiplies of 50 and 100. (Number: Place value) Recall and use multiplication and division facts for the 3 multiplication tables. Count from 0 in multiplies of 4 and 8 . (Number: Place value) Recall and use multiplication and division facts for the 4 multiplication tables. Recall and use multiplication and division facts for the 8 multiplication tables. Write and calculate mathematical statements for multiplication using multiplication tables that they know, including for 2 digit numbers times 1 digit numbers, using mental and progressing to formal written methods Write and calculate mathematical statements for division using multiplication tables that they know, including for 2 digit numbers divided by 1 digit numbers, using mental and progressing to formal written methods Solve problems missing number problems involving multiplication and division Solve positive integer scaling problems Solve correspondence problems in which n objects are connected to m objectives.	Number: Fractions Count up and down in tenths. Recognise that tenths arise from dividing an object into 10 equal parts and in dividing onedigit numbers or quantities by 10 Recognise, find and write fractions of a discrete set of objects, unit fractions and non-unit fractions with small denominators. Recognise and show, using diagrams, equivalent fractions with small denominators.	Statistics Interpret and present data using bar charts, pictograms and tables. Solve one-step and twostep questions (e.g. 'How many more? How many fewer?') using information presented in scaled bar charts and pictograms and tables.

	National Curriculum Statement	All students				
		Fluency			Reasoning	Problem Solving
	Find 10 or 100 more or less than a given number.	- Find follow - What these 283, - Fill in 10 less 674 	O more and ing number 23,6 146,192 is 100 mo numbers? 591,1392, the missin Starting number 325 892	dess than the s: 96 374 or less than 2901, 1892 numbers: 10 more \qquad 1001	- Emily has made the number: 3 0 5 Write down the number that is 10 less than 305. Now write down the number that is 10 less than this new number. Explain what is happening to the number each time. - What comes next? 536-10=526 526-10=516 516-10=506 - True or False When I add 100 to any number, I only need to change the hundreds digit.	- 10 more than my number is 100 less than 320. What is my number? - Using number cards 0-9 can you make the answers to the questions below: 10 less than $8+7$: 10 more than 3×10 : 100 less than 336: 100 more than 691: 10 less than 3×6 : - I think of a number. I add 10 and then take away 100. My answer is 350 . What was my number?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Recognise the place value of each digit in a three digit number (hundreds, tens, ones).	- Write the value of each underlined digit. $3 \underline{18}, 92, \underline{9} 21$ - 512 is made of hundreds, \qquad ten and \qquad ones. - Find the value of $\boldsymbol{\Delta}$ in each of these statements. $\begin{aligned} & \boldsymbol{\Delta}=500+70+4 \\ & 628=\boldsymbol{\Delta}+20+8 \\ & 703=700+\boldsymbol{\Delta}+3 \end{aligned}$	- Explain the value of 4 in the following numbers: 546, 473, 894 - 543 is made of 5 hundreds, 4 tens and 3 ones. It is also made of 54 tens and 3 ones. It is also made of 543 ones. Can you express 627 in the same way? - What is the same about these numbers and what is different? $375 \quad 357$	- Henry thought of a number. He thought of a two-digit number less than 50 . The sum of its digits was 12. Their difference was 4 . What number did Henry think of? - Use the clues to find the missing digits: The hundreds digit is double the tens digit. The tens digit is 5 less than $2 x$ 8. The ones digit is 2 less than the hundreds digit. - Claire, Libby and Katie are holding three digit numbers. Claire and Libby have given clues below: Claire- My number has the smallest amount of ones. Libby- The tens in my number are 2 less Claire and Katie's added together. $345 \quad 247 \quad 368$ Can you work out which number is which?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Compare and order numbers up to 1000	- Harry puts the following numbers in order. $345,278,301,287,368$. Which number would be third? - Using 3 counters, like shown in the place value grid below, make all the numbers possible. Order from smallest to largest. - Here are three digit cards. Write all the three digit numbers that you can make and order them from smallest to largest. 4 \square 2 5	- Write the following numbers from largest to smallest. Explain how you ordered them. 445, 378, 601, 387, 468 - Put one digit in each box to make the list of numbers in order from smallest to largest. - True or False: You must look at the highest place value column first when ordering any numbers.	- In pairs, each child has to make a 3 digit number. They pick a 0-9 number card and decide where to write the number. Do this until they have created a 3 digit number. In each game they change the criteria they have to meet to win. Eg Make the smallest number. Make the largest number. Make a number between 300 and 500. - I am thinking of a number. My number is between 300 and 500 . The digits add up to 14 . The difference between the largest and the smallest digit is 2 . What could my number be? Order all the possible numbers from smallest to largest. - Deena has ordered 5 numbers. The largest number is 845 , the smallest number is 800 . The other numbers all have digit totals of 12 . What could the other numbers be?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
$\begin{aligned} & \frac{1}{\beth} \\ & \frac{\square}{\pi} \\ & \vdots \\ & 0 \\ & \frac{\pi}{\square} \end{aligned}$	Identify, represent and estimate numbers up to 1000 using different representations.	- What number is represented in each set? - Use place value counters or base 10 to represent the following numbers 382, 560, 905 - Show 450 on the number line.	- Place 725 on each of the number lines below. - Alice says 'The number in the place value grid is the largest number you can make with 8 counters.' Do you agree? Prove your answer. - Henry has one counter and a place value grid. He says he can make a one, two, three and four digit number. Is he correct? Show this on a place value grid.	- Using four counters and the place value grid below, how many different numbers can you make? Eg 211 - Simon was making a three digit number using place value counters. He has dropped three of his counters on the floor. What could his number be? - If the number on the number line is 780 , what could the start and end point of the number line be?

	National Curriculum Statement	All students								
				Flue				ning		Problem Solving
	Add numbers mentally, including - a three-digit number and ones; - a three-digit number and tens; - a three digit number and hundreds. Subtract numbers mentally, including - a three-digit number and ones; - a three-digit number and tens; - a three digit number and hundreds.	- Calculate: $\begin{array}{\|l\|l} 153+6 \\ 153+60 \\ 153+600 \end{array}$ - Calculate: $\begin{array}{\|l\|} \hline 356-9 \\ 356-90 \\ 356-200 \end{array}$ - Fill in the missing numbers					- Are these number sentences true or false? $396+6=412$ $504-70=444$ $556+150=706$ Justify your answers. - Always, Sometimes, Never When you add 7 to a number ending in 8 your answer ends with 5 . Explain your answer. - Which questions are easy, which are hard? $\begin{array}{ll} 453+10= & 930-100= \\ 493+10= & 910-120= \end{array}$ Why are some easy and some hard? Explain your reasons.		- Always, Sometimes, Never - 2 odd numbers add up to make an even number. - 3 odd numbers add up to make an even number. - Adding 8 to a number ending in 2 makes a multiple of 10 . - Three pandas ate 25 bamboo sticks. Each of them ate a different odd number of bamboo sticks. How many bamboo sticks did they each eat? Find as many ways as you can to do it. - A magician is performing a card trick. He has eight cards with the digits 1-8 on them. He chooses four cards and the numbers on them add up to 20 . How many different combinations could he have chosen?	
¢		Start	Ad d 5	$\begin{aligned} & \hline \text { Add } \\ & 50 \end{aligned}$	$\begin{aligned} & \hline \text { Add } \\ & 100 \end{aligned}$	$\begin{aligned} & \text { Add } \\ & 500 \end{aligned}$				
		342								
			322							
				246						

	National Curriculum Statement	All students				
		Fluency		Reaso		Problem Solving
	Add numbers with up to three digits, using formal written methods of oclumnar addition. Subtract numbers with up to three digits, using formal written methods of columnar subtraction.	* Use the grid to solve the calculation below. - Wite down three numbers that add up to make 247. $\ldots+=247$ Wite down a different set of numbers that add up to 247. - Harry has 357 stickers, John has 263. How many do they have altogether? If Harry gives John 83 stickers, how many do they have each now?		missing £342 He spe ction b has left 282 140 rrors in ct them Error	numbers in the in his bank It E282. Does elow show how Explain your 342 the calculations to find the right	* The answer to the addition is 201. All the digits used are either 1 or 9 . Fill in the boxes. $201=\square \square+\square \square+\square \square$ Can this be done more than one way? Convince me: - Roll a 1-6 die, fill in each of the boxes and try to make the smallest total possible. Repeat and try to find different answers. Could you have placed the digits in a different place to make a lower total? \square \square \square $+$ \square \square - Molly went swimming every day for 5 days. She swam 80 lengths during the 5 days. Each day she swam 4 less lengths than the day before, how many lengths did she swim each day?

	National Curriculum Statement	All students					
		Fluency	Reasoning	Problem Solving			
	Recall and use multiplication and division facts for the 3 multiplication tables. Recall and use multiplication and division facts for the 4 multiplication tables. Recall and use multiplication and division facts for the 3 multiplication tables.	* Calculate: $3 \times 4=4 \times 7=8 \times 3=$ - If I know $3 \times 8=24$. What other multiplication and division facts do 1 know? - Fill in the gaps $\begin{aligned} & 3 x=24 \\ & =56 \div 8 \\ & 6 \times 4=8 x \end{aligned}$	- Tom says 'I can use my 4 times table to help me work out my 8 times table'. Is he correct? Convince me. * What pair of numbers could be written in the boves? $\square \times \square=24$ - Start this rhythm, clap, clap. click, clap. chan click. Carry on the rhythm, what will you be doing on the $15_{w}^{\text {e }}$ beat? How do you know? What will you be doing on the20th beat? Explain and prove your answer.	- A group of aliens live on Planet Xert Tinions have three legs, Quinions have four legs. The group has 22 legs altogether. How many Tinions and Quinions might there be? ls there more than one sclution? - Sally has baked some buns. She ocunted her buns in 4 's and had 3 left over. She counted them in fives and had four left over. How many buns has Sally got? - Can you sort the cards below so that they would follow round in a loop? The number at the top is the answer, then follow the instruction at the bottom to get the nest ancwer.			

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Recall and use multiplication and division facts for the 3 multiplication tables. Recall and use multiplication and division facts for the 4 multiplication tables. Recall and use multiplication and division facts for the 3 multiplication tables.	- Solve: $\begin{array}{r} 3 \times 4= \\ 4 \times 3= \\ 12 \div 3= \\ 24 \div 8= \end{array}$ - Fill in the boxes: $\begin{aligned} & 3 \times \square=21 \\ & \square \times 8=32 \\ & 40 \div \square=8 \end{aligned}$ - Shakira buys 8 boxes of cupcakes. There are 4 cupcakes in each box. How many cupcakes does she buy altogether?	- Use the array to complete the number sentences below: $\begin{aligned} & 3 \times \square=\square \\ & \square \times 3=\square \\ & \square \div 3=\square \\ & \square \div \square=3 \end{aligned}$ - What is wrong with this division sentence? $4 \div 10=40$ Can you correct it?	- Fill in the boxes below using 8 different whole numbers. - Mia has 17 pounds. She wants to buy some cakes and chocolates. Cakes cost $£ 3$ and chocolates cost $£ 4$. How many different combinations of cakes and chocolates could she buy?

	National Curriculum Statement	All Students		
		Ftuency	Reasoning	Prablem Solving
	Recognise that tenths arise from dividing an object into 10 equal parts and in dividing one digit numbers or quantities by 10	- Here is a number line from 0.-1 Can you til in the miseing frectens on the fumber inst? - Wirte the fraction of the shape frat is atactent - Draw and seade shapes to show the folkwing taclions. $\frac{1}{16} \quad \frac{6}{36} \quad \frac{t}{10}$	* What do you notice in thes mumber senlonces bolow? $\begin{aligned} & \frac{1}{38} \text { of } 10=1 \\ & \frac{2}{33} \text { of } 10-2 \\ & \frac{3}{35} \text { of } 10=3 \end{aligned}$ Can you croninae then pollem up io $\frac{10}{11}$? *What do you notice in the nusiber senterces below? $\begin{aligned} & \frac{1}{10} \text { of } 20=2 \\ & \frac{2}{10} \text { of } 20=4 \\ & \frac{3}{10} \text { of } 20=6 \end{aligned}$ Can you consinia the patlem up to $\frac{10}{10} ?$ - Three pizzas are shared açually bebween len cheldren. If aach pizza is cut into 10 pibcers, how mory piecos wil each child goc? Prous if using a ficturn of cisgram	* Lata has $\$ 0$ chemries. On Mondsy she gives $\frac{1}{16}$ of the cherries to her mum and then aste 7 . Cn Tuesclay scee mats $\frac{3}{10}$ of the thurriso and givet if to fer mum On Wedesidey she aals $\frac{1}{10}$ ef tee cherries. How macy charries does sha have beft? have in common?

	Add fractions with the same denominator within one whole Subtract fractions with the same denominator within one whole	- Complete the statements: $\begin{gathered} \frac{1}{5}+\frac{3}{5}= \\ \frac{6}{8}-\frac{3}{8}= \\ \frac{2}{10}+\frac{3}{10}+\frac{4}{10}= \end{gathered}$ - Write these statements using numbers: 1 sixth +3 sixths $=\square$ sixths 5 eighths -3 eighths $=$ Eighths - Find the sum of: $\frac{2}{12}, \frac{4}{12} \text { and } \frac{5}{12}$	- Explain why only the numerator changes in this calculation $\frac{2}{5}+\frac{9}{5}=$ - Rick is stuck on the calculation $\frac{11}{6}-\frac{3}{6}=$ His friend, Susie, draws him the following model to help. Susie says, "Now take $\frac{3}{6}$ away". Rick is confused because he thinks the diagram shows $\frac{11}{12}$ Explain the diagram to Rick and work out the answer.	- Use some of the cards below to make a fraction sentence. Can you make more than 1 ? - How many fraction addition and subtractions can you make from this model? Do your additions and subtractions always have to be 1 part add 1 part or subtract only 1 part? Can there be more than 2 parts?

- Three pandas shared 1 bamboo stick. They split it into equal parts and each had an odd number of parts.
What are the possible fraction amounts that each panda had? Can you use a strategy or a method?

	National Curriculum Statement	All Students		
		Fluency	Reasoning	Problem Solving
	Tell and write the time from an analogue clock, including using Roman numerals. Tell and write 12-hour digital time Tell and write 24-hour digital time	- What time is shown on the analogue clocks below? - Draw the times on the blank analogue clocks. a) Five past four b) Twenty five to ten c) Half past seven - Match the times on the digital clocks to the analogue clocks. 14:45 17:05 $0 \text { : } 40$	- The clock only has one hand. What time could the clock show? Explain your choice carefully. - Kim is explaining how to tell the time on a 24 - hour clock. 'Look at the hour number and minus 122^{\prime} Do you agree with Kim? Prove your answer by showing examples. - Leila is telling the time from an analogue clock. The hour hand is pointing to XI the minute hand is pointing to XII' What time is it?	- What is different about the clock below? Can you still use it to tell the time? - On a digital clock, there are certain times when the numbers are in consecutive order, in counting order, either forwards or backwards eg 1:23 or $5: 43$ How many times during a day does this happen? - Fill in the gaps in the story with the digital time. Lucy gets up at quarter past eight in the morning \qquad She has her breakfast at twenty to nine \qquad Lucy goes shopping at quarter to eleven \qquad and returns home at twenty past one in the afternoon \qquad Can you write your own story about your day?

	National Curriculum Statement	All Students			
		Fluency	Reasoning		Problem Solving
	Record and compare time in terms of seconds, minutes and hours.	- Use a stopwatch to record the following events: a) Time taken to run all the way around the playground. b) Time taken to complete 10 mental maths questions. c) Time taken to do 20 star jumps. How long did each event take? Which took the longest? Would you record your time in seconds or minutes? - In 1913 the world record for the quickest mile run by a man was 4 minutes 14 seconds. The world record is currently is 3 minutes 43 seconds. What is the difference in times? Can you find and compare other world records? How long do you think it would take you to run mile?	- Dan takes 153 seconds to skip around the playground. Tilly takes 2 minutes 23 seconds. Who is the quickest? Explain how you know. - Cut up the cards below and turn them over. Try to find a matching pair of an activity and the length of time you think it takes. Does everyone agree with the time it takes? How can you prove it?		- Saira goes to three different activities a week. They all start at 6 o'clock but are different distances away. Can you match the day and time she leaves with the activity she is going to? Tuesday Ballet 42 minutes 17:35 Eway
			Time taken to count from 1 to 10 年	10 seconds	Wednesday $17: 18$Foortall 35 minutes away
			Time taken to brush your teeth	90 minutes	
			Time taken to run 100 m	3 minutes	$525 \mathrm{pm} \int \underset{\text { away }}{25 \text { minutes }}$
			Time taken to travel to Spain.	5 seconds	One day, Saira is 13 minutes late for
			Time taken to watch a football match.	2 hours	her house that day? Saira changes to a later ballet class that starts at $6: 40$. What time will she have to leave her house now?

	National Curriculum Statement	All Students		
		Fluency	Reasoning	Problem Solving
	Compare durations of events [for example to calculate the time taken by particular events or tasks].	- A TV programme starts at $5: 20$ and finishes at $6: 05$. How long does the programme last for? - Kieran is learning his times tables. On Monday it takes him 1 minute and 12 seconds to complete 10 questions. By Friday he can complete 10 questions in 42 seconds. How much quicker is he by Friday? - Look at the two clocks below. How much time has passed between the first and the second clock?	- Henry measures the time it takes for three of his friends to do 30 star jumps. He wants to find out who is the quickest. Henry says: The person with the highest time is the winner because the highest score always wins! Is Henry correct? Explain your reasoning. - Order the times below from shortest time to longest time. 83 seconds 1 minute 12 seconds 56 seconds 2 minutes 2 seconds 1 minute 87 seconds 143 seconds Explain your reasoning.	- Ashrita Furman is famous for holding the most world records at the same time, 131 ! Below is a list of world records he has broken travelling one mile on different equipment. Estimate and order the records from the one you think is quickest to the one you think took the longest. (Remove information in brackets until after activity) 1. Pool Cue balancing on finger (6 min 55 s) 2. On a Space Hopper (13 min) 3. Sack Race (16 min 41 s) 4. Pogo stick whilst juggling (23 min 28s) 5. Hula hooping whilst balancing a milk bottle on head (13 min 37 s) 6. Pushing an orange with your nose. (22min 41s) 7. Playing tiddlywinks (23 min 22 s) How long do you think it would take you? See how long it takes you to complete some of the challenges over 100 min .

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$).	- How long is the pencil? - Find the length from $A-B$, find the length from B-C. Which is longer? How much longer?	- If I have 3 m of ribbon and cut it into 50 cm lengths, how many lengths can I cut? Convince me. - Abigail's ruler has broken. How could she still use it to measure things?	- A coach is three times as long as a car. A train is 6.5 m longer than a coach. The train is 36.5 m long. How long is the car? - Which of the following statements could be true? Check them and correct the false ones by using measuring equipment. - A chair is about 120 mm tall.
	Measure, compare, add and subtract: mass (kg/g) Measure, compare, add and subtract: volume/capacity (l/ml)	- Insert < and > into the number sentences. $\begin{aligned} & 13 \mathrm{~cm} \square 140 \mathrm{~mm} \\ & 1 \mathrm{~m} \quad 90 \mathrm{~cm} \end{aligned}$	- Harry is measuring the length of this pencil. Explain what he is doing wrong.	- A sensible portion of pasta is about 40 m . - A ruler is about 300 mm long. - The length of a swimming pool is 50 m , Miss Jones swims 200 m every morning. How many lengths is this?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Measure the perimeter of simple 2D shapes.	- What is the perimeter of the rectangle? - A square has sides of 3 cm . What is the perimeter of the square? - Measure the perimeter of the triangle.	- A square has sides that are in whole cm. Which of the following measurements could be its perimeter? $18 \mathrm{~cm}, 8 \mathrm{~cm}, 25 \mathrm{~cm}, 24 \mathrm{~cm}$ Explain your thinking. - Tick the correct statement about the shapes below. Shape A B Shape - Shape A has a bigger perimeter than shape B. - Shape B has a bigger perimeter than shape A. - Shape A has the same perimeter as shape B. Explain how you know.	- This shape is made from identical squares. The perimeter of the whole shape is 24 cm . Find the perimeter of the central square. Explain how you found the solution. - How many different rectangles can you draw with a perimeter of 20 cm ? - A rectangle has sides where the length is double the width. If the perimeter is 12 cm , what are the length and the width of the rectangle?

Identify right angles.
Identify whether angles are greater than or less than a right angle.

Recognise that two right angles make a half-turn, three make three quarters of a turn and four make a complete turn.

- How many right angles does this circle have?

- Tick the angles that are less than a right angle

- Using 2 sticks or straws, can you make 1, 2 and 4 right angles?
- True or false?

You can make a right angle with curved lines.

- Sahil says,

A complete turn equals 360° therefore a shape cannot have more than 360° when their angles are added together.

Do you agree?

- Draw different stick men with two arms and two legs. How many different ways can you do where the arms and legs are different sized angles (including greater than and less than a right angle)?

For each drawing write how many greater and/or less than angles there are e.g.
2 angles less than a right angle
2 angles greater than a right angle

- Create a group freeze frame showing lots of different angles and draw this afterwards. Can you turn 45° to the left? How has your angle changed?

Solve one-step and two-step questions (for example, 'How many more?' and 'How many fewer?') using information presented in scaled bar charts and pictograms and tables.

Day	People at park
Mo	
Tu	+3
We	+2
Th	+3
Fr	
Sa	
Su	+3

- How many more people went to the park on Sunday than Monday?
- How many fewer went to the park on Wednesday than the day after?
- How many people attended in the week if all the people were different?
- The next week 12 more people went on Saturday. How many went?
- True or false?

At the park there 4 double swings and 6 single swings.
Look at the table on the left.
There weren't enough swings for
the people at the park on
Thursday.

- Always, sometimes, never.

Pictograms can only have data where each row is a multiple of the key given.
e.g. If the key equals 3 then only multiples of 3 can be in the pictogram.

- How many questions can you create for your partner for this set of data?

Day	Amount of hours shop open
Monday	6
Tuesday	8
Wednesday	8.5
Thursday	7
Friday	10
Saturday	12

- Look at the table above. The shop closes for 45 minutes each day so the workers can have their lunch. How many hours are the workers there in a week?
- Work in a group to work out how many hours you each spend sleeping a week.
Consider what will be the best way to record these results so they can all be displayed in one graph.

