Year 2

Maths Overview

38.

\%ッMathsHuBS
White Rose

Year 2 Overview

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	Week 15
$\begin{aligned} & \stackrel{ᄃ}{E} \\ & \frac{1}{3} \\ & \frac{1}{3} \end{aligned}$	Number: Place value		Number: Addition \& Subtraction				Measures: Length \& height Weight/Mass		Number: Multiplication and Division		Number: Fractions			Opportunity to consolidate, revisit and reinforce	
	Num Place		Number: Four operations (addition, subtraction, multiplication \& division)		Geometry: Properties of Shape		Measures: Volume \& capacity, Temperature								
	Number: Fractions			Measures: Time		Geometry: Properties of Shape		Number: Four operations (addition, subtraction, multiplication \& division)			Measures: Length \& height, Weight/Mass, Volume \& capacity		Opportunity to consolidate, revisit and reinforce		

Please note: The length of each unit has been given as a guide only. Use professional judgement to either extend or shorten units in line with the needs of pupils. The 'spare' weeks at the end of each term have been planned in to allow for this flexibility or give the opportunity to consolidate, revisit and reinforce.

Where units revisit objectives, use assessment data to inform planning.

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Count in steps of five from 0 and steps of 10 from any numberforwards and backwards Count in steps of 2 from 0forwards and backwards Count in steps of 3 from 0forwards and backwards	- Continue the sequence: 2, 4, 6, 8, 10, \qquad 15, 20, 25, 30, \qquad 90, 80 , 70, \qquad 21, 18, 15, \qquad - Fill in the missing numbers - Circle the odd one out: 20, 18, 17, 14, 12, 10 $3,8,13,18,23,27,33$, $12,15,18,20,24$	- Spot the mistake: What is wrong with this sequence of numbers? $55,50,45,35$ - True or False I start at 0 and count in 3 's. I say the number 14 . - What comes next? $\begin{aligned} & 21+5=26 \\ & 26+5=31 \\ & 31+5=36 \end{aligned}$	- Harry has made a sequence of numbers using six number cards. Here are three of the cards: can you think of two sequences Harry could have made? 10 20 30 - A spider is climbing a 30 m building. Each day it climbs 5 m and slides back down 1 m . How many days will it take to reach the top? - Sid is counting in 2's, Luke is counting in 3's. Sid says 'If we add our numbers together as we count we can make a new pattern.' What pattern do they make? What happens if Sid counts in 5's and Luke counts in 10's?

	National Curriculum Statement	All students				
		Fluency	Reasoning	Problem Solving		
	Recognise the place value of each digit in a 2 digit number (tens, ones)	- In the number 36 there are \qquad groups of ten and ones. - The number \qquad is made up of seven groups of ten and eight ones. - The number 89 shows in the tens place and in the ones place.	- Use manipulatives to show and then explain the value of 5 in the following numbers: 35, 56, 75 - Use manipulatives to make 2 digit numbers where the ones digit is two less than the tens digit. What is the largest number you can make? What is the smallest number? - Sally says 'My number has 5 tens. The ones digit is less than the tens.' What could Sally's number be?	- Work in a pair. Partner A writes down a 2 digit number. Partner B guesses the number. Partner A ticks one of the columns in the table below and Partner B keeps guessing until they guess the correct number.		
				Clue	${ }_{1}^{\text {Guess }}$	${ }_{2}^{\text {Guess }}$
				Both digits correct		
				$\begin{array}{\|l\|l} \hline \text { Ones digit } \\ \text { correct } \end{array}$		
				价 $\begin{aligned} & \text { Neither digit } \\ & \text { correct }\end{aligned}$		
				- You hav Using e -La -La - Sm -La - How ma you mak and the	-9 num card st eve est odd lest od est mul mber c 2 digit using 3 mber g	ber cards nce, make: number number number iple of 5 osest to 50. numbers can counters rid below?
				Tens	Ones	-

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
$\frac{0}{\square}$	Read and write numbers to at least 100 in numerals.	- Match the numerals to words. - Write the following numbers in words: $32,75,52,41 .$	- Dan has written the number 40 4. Is he correct? Explain how you know. - True or False? The number fourteen is written as 40 in numerals. Prove it. - What number is represented in the place value grid?	- Match the words to the numerals. Fill in the missing digits. - Complete the wordsearch (see
	Read numbers to at least 100 in words. Write numbers to at least 100 in words.	- Write the following numbers in numerals: seventy four, thirty six, fifty five.	How many different numbers can you make with four counters? Write them in numerals and words.	resources) to find the numbers written in words. - Work out the answers to the clues in order to complete the number-word crossword (see resources)

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Show that the addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot.	- Use the bar model below to write 2 additions and 2 subtractions. - If I know $34+43=76$, what other addition can I write?	- True or False? These four calculations have the same answer. $\begin{array}{ll} 1+4+2 & 2+4+1 \\ 4+2+1 & 4+1+2 \end{array}$ Explain your answer. - True or False? These four calculations have the same answer. $\begin{array}{ll} 7-3-2 & 2-3-7 \\ 3-2-7 & 7-2-3 \end{array}$ Use cubes to help to explain your answer. - Sid says 'In a subtraction, you always start with the biggest number and take away from that.' Do you agree? Explain your answer.	- Use the number cards below to make as many additions and subtractions as you can? How many can you make? 3 7 4 10

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Recognise and use the inverse relationship between addition and subtraction and use this to check calculations Use inverse relationships between addition and subtraction to solve missing number problems.	- Fill the gaps: $\begin{aligned} & 17+5=22 \\ & 22-\quad=17 \end{aligned}$ - If 1 know $34+20=54$, what other addition and subtractions sentences do I know? - Dan calculates $67+8=$ 75 , use a subtraction to check his answer.	- Kate has baked 32 buns, she sells 15 buns. She says 'I have 16 more to sell'. Is she right? Use an addition sentence to prove your answer. - Oliver is working out a missing number problem. $17+\ldots=24$ I am going to use a subtraction to solve the problem. Explain how he is going to work out the answer.	- I think of a number. I take away 7 and add 2. My answer is 15 . What is my number? - Look at the temperature on the thermometer. The temperature has dropped 8 degrees in 2 hours. What was the temperature 2 hours ago?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Choose and use appropriate standard units to estimate and measure length/height in any direction $(\mathrm{m} / \mathrm{cm})$ to the nearest appropriate unit. Choose and use appropriate standard units to estimate and measure mass (g / kg) to the nearest appropriate unit.	- How long is the car? - How tall is the teddy bear? - How much do the cubes weigh?	- How much do the 2 red bears weigh? Which is heavier the red or the yellow bear? Explain your reasoning. - Can you use the ruler below to measure an item that is longer than 10 cm ? Explain your answer. - Decide which item to use to measure the following items. - The length of the hall. - The width of the table. - The weight of a book.	- Get five boxes that each have a different amount of sand in them. Some tall, some long, some small. Work out which the children think is the biggest (they can measure with a ruler), then introduce the idea: the biggest box is the heaviest. Children then can choose how they work out the answer through weighing. - Choose 5 objects from around the classroom, estimate how long they are. Then measure them, choosing the most appropriate equipment and unit. How close was your estimate?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Compare length and mass and record the results using $>,<\text { and }=\text {. }$ Order measures	- Order the lengths below from shortest to longest: $12 \mathrm{~cm}, 25 \mathrm{~cm}, 20 \mathrm{~cm}, 15 \mathrm{~cm}$ - Weigh the items below, write a number sentence showing which is heavier using < or $>$. - Fill in the boxes using <, > 12 \qquad 17 m Table length Chair height 7 kg	- How long is the pen? How much shorter is the pencil? Show me. - Helen says 'I think the bigger something is, the heavier it is' Do you agree? Use objects in your classroom to prove your answer. - True or False? $\begin{gathered} 24 \mathrm{~cm}<36 \mathrm{~cm} \\ 45 \mathrm{~cm}>46 \mathrm{~cm} \\ 31 \mathrm{~m}>30 \mathrm{~m} \end{gathered}$ Explain your reasoning.	- Four students measured their heights. Lucy was taller than Katie, but not as tall as Tim. Gary was taller than Tim. Write down their names in order of their heights, from shortest to tallest. - Usain Bolt can run 100 m in 9.58 seconds (just below 10 seconds). How far do you think you can run in 10 seconds? Measure how far you and your friends can run in 10 seconds. Order your distances from longest to shortest. - Hannah is weighing three bags. The green bag is heavier than the pink bag. The orange bag is lighter than the pink bag. Order the bags from heaviest to lightest. If the pink bag weighs 7 kg , what could the other bags weigh?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity.	- How many people liked dogs the most? Which was the least favourite animal? - Count the coloured dots. Make a tally chart to show how many dots there are of each colour. - Using your tally chart, answer the following questions. Which colour is the most? Which is the least? How many green dots	- True or False? The children saw more cars than bikes. - Make up your own true or false statement about the pictogram above. - Henry is making the block diagram below using cubes. He says 'The higher the tower of cubes, the more popular the transport.' Do you agree? Explain your answer.	- Which letter is used most in our names? Conduct a survey in your class to find out which letter appears most in your first names. Work out how to collect the data and then present it in a graph. Answer the questions below: - Which letter appears the most? - Which letter appears the least? - How many times does the letter a appear?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Ask and answer questions about totaling and comparing categorical data.	- Use the bar graph to answer the following questions: -How many cats and dogs were there altogether? -How many more bears were there than snakes? - Add together the animal with the most votes and the animal with the least. How many altogether?	- Harry said 'If I add the number of lorries and bikes together then it will be equal to the number of cars' Is he right? Convince me. - Lucy says 'To find the total number of vehicles I need to add all the cars up.' Is she correct? Explain your answer.	- What is the most common colour of car that passes school? Conduct a traffic survey. Make a tally chart and then create a pictogram and bar chart. Answer the questions such as: - How many cars were there altogether? - How many more blue cars were there than red cars?

	National CurriculumStatement	All students		
		Fluency	Reasoning	Problem Solving
	Recall and use multiplication and division facts for the 10 times tables. Recall and use multiplication and division facts for the 5 times tables. Recall and use multiplication and division facts for the 2 times tables. Recognise odd and even numbers.	- Calculate: $4 \times 5=\quad 20 \div 2=$ $6 \times 10=\quad 25 \div 5=$ - A flower has 5 petals. How many petals do 5 flowers have? - Circle the odd numbers. $\begin{array}{lllll}12 & 13 & 17 & 18 & 21\end{array}$	- Which has more? 4 bags of sweets with 5 in each or 3 bags of sweets with 10 in each? Explain your reasoning. - $20=\square \times \square$ What numbers could go in the boxes? Prove it. - I have 35 p in my pocket in 5 p coins. How many coins do I have? Draw a picture to prove your answer.	- Tubes of bubbles come in packs of 2 and 5 . Holly has 22 tubes of bubbles. How many of each pack could she have? How many ways can you do it? - Sally and Katie want to share sweets out equally between them. They can buy bags of 17, 18 or 21 sweets. Which bag should they buy? What other packs of sweets could they buy? - Fran and Lily had a tub of lollies. When they shared them between them they had one left over. Just as they had finished sorting, three of their friends came and wanted some lollies so they shared the same lollies again. This time they had 2 left over. How many lollies might have been in the tub?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (\div) and equals (=) sign.	- $5 \times 3=15$ Write a division sentence using the same numbers. - Write these addition sentences as multiplication sentences. $\begin{aligned} & 5+5+5+5=5 \times 4 \\ & 2+2+2= \\ & 10+10= \end{aligned}$ - Can you write 4 number sentences to describe the array?	- How many number sentences can you write to describe this array? Can you use addition, multiplication and division? Explain your answers. - Which four number sentences link these numbers $2,4,8$? Prove it. - Write these addition sentences as multiplication sentences. $\begin{aligned} & 10+10+10+5+5= \\ & 2+2+2+10+10= \\ & 5+5+5+2+2+2= \end{aligned}$	- Ted buys 4 books for $£ 2$ each. If he has a $£ 10$ note, how much change will he get? Write the multiplication sentence you need to do. - Use the number cards to make multiplication and division sentences. How many numbers up to 20 can you make? \square 3 \square 4 5 - Use the picture below to think of multiplication and division sentences using x, \div and $=$

	National Curriculum Statement	All students			
		Fluency	Reasoning	Problem	ving
	Find different combinations of coins that equal the same amounts of money	- Make 50p three ways using the coins below. You can use the coins more than once. - I have £1.45. Can you find or draw the coins I could have to make this? - Paul has $£ 2$ and Tony has $£ 1.20$. Which coins could Tony add to his pile to make his and Paul's amounts equal?	- Charanjot tells her friend Sam she has only silver coins in her hand. She says she has 43p. Sam thinks that's impossible. Do you agree with Sam? Explain why. - True or false: 4 five pence coins are worth more than 2 ten pence coins. Explain why. - Emily finds a 20p coin and thinks she now has enough for a ride on the ghost train. She puts it with her other three 20p coins. The ghost train costs $£ 1$. Is she correct? Explain why.	- Hanna and Ste both claim to have 90p. Hanna has 3 coins and Ste has 4 coins. Are they correct? Which coins could they have? - Emily has $£ 3.40$ and Katie has $£ 2.20$. How much does Emily need to give Katie so they have the same amount? - Here is a price list. Jay has $£ 2.20$ What can he buy?	
				Item	Price
				Chicken sandwich	£1
				Ham sandwich	$£ 1.50$
				Turkey sandwich	£1.20
				Salad	30p
				Jacket potato	£1
				Panini	$£ 1.30$
				Soup	£1.60
				Sauce	10p
				Can of pop	60p
				Bun	60p
				Chocolate bar	50p
				Can you find a diffe he can buy?	et of items

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change.	- Benji spends $£ 1.35$ in the shop and pays with a $£ 2$ coin. How much change will he receive? - Arun buys an ice lolly from the ice cream van. It costs 90 p. He pays in 10 pence coins. How many 10 pence coins does he use? - Fill in the missing box: $\begin{aligned} & \square+40 p=£ 1-30 p \\ & 70 p-50 p=5 p+ \end{aligned}$	- True or false: you can make 51p using just 2 pence coins. Write an explanation with your answer. - Alex has 90 p. He bought a rubber for 30 p and wants to buy a pencil. The shopkeeper will not sell him the pencil. Can you explain why to Alex? - Odd one out. Look at the coins below. Which one is the odd one out and why?	- Marie went to the shop and spent 20 p . She bought at least one of each sweet. Which item did she buy two of? - Frankie bought candyfloss at a fayre. She paid with 6 coins. How much could the candyfloss have been? Which answer do you think is the most reasonable? - Colin has 5 coins in his pocket. How much money might he have?

	National Curriculum Statement	All students		
		Fluency	Reasoning	Problem Solving
	Recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a shape. Recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, set of objects or quantity.	- What fraction of the shape below is shaded? - Pat is organising her teddy bears. She donates $\frac{1}{4}$ of them to charity. How many bears did she have left? Circle the shape showing $\frac{1}{4}$ \square	- Circle the odd one out. Explain why you have chosen this fraction. $\begin{array}{llll}\frac{1}{4} & \frac{1}{3} & \frac{2}{4} & \frac{1}{2}\end{array}$ - Four children want an equal share of this paper signed by a famous singer. Explain how they can do it. - Amy is picturing two fractions. She says, "I think $\frac{1}{4}$ will be bigger than $\frac{1}{2}$ because 4 is bigger than 2." Draw these fractions to prove her wrong.	- Find fractions all around you. Write and illustrate them in your journal e.g. The food filled $\frac{1}{2}$ of the plate. - Look at 20 toy cars. Is it possible to find $\frac{1}{2} \frac{1}{3}$ $\frac{1}{4}$ of them without breaking any of them? - Use 3 circles, colour them in so they show $\frac{1}{4}$ $\frac{2}{4}$ and $\frac{3}{4}$. Write a sentence to explain what you notice. Now colour 3 circles and colour them in so they show $\frac{1}{2} \quad \frac{1}{3}$ and $\frac{1}{4}$ Write a sentence to explain what you notice. What is the difference between the first set of circles and the second set of circles?

	Year 2 Summer			
		All Students		
		Fluency	Reasoning	Problem Solving
	Tell and write the time to the nearest 15 minutes Tell and write the time to the nearest 5 minutes (GD-ITAF) Draw hands on a clock face to show times to the nearest 15 minutes Draw hands on a clock face to show times to the nearest 5 minutes (GD-ITAF)	- Lily starts school at 8:45am. She arrives 10 minutes early. Show what time she arrived on the clock. - What time is the clock showing? - Complete the missing times. James wakes up at 6:50am. 15 minutes later, he eats his cereal. This takes him 5 minutes. It is now \qquad . Half an hour later the time is \qquad . This is when he arrives at work.	- At a supermarket, the workers take turns to have a break. All breaks start at either quarter past and quarter to and end at either quarter past or quarter to. What are the two lengths of break times? How do you know? - The big hand on the clock is pointing to the 8 and small hand is pointing to the 8. What time is it? How do you know? - Which clock is showing 10 past 5? Explain why.	- Put these clocks in order - Look at these 3 clocks. What might you be doing at these times in the day? - Sammy starts her questions at 11:10 It takes her 5 minutes per question. She finishes at 11:55 How many questions did she complete?

	Know the number of minutes in an hour \& the number of hours in a day.	- The petals of the flower that shows how many minutes have passed the hour have fallen off. Can you put them back in the right order? - Amie arrives to a party at 4:30pm. She leaves at 5:30pm. How long did she stay? Tell me in hours and then in minutes. - Tellme: The number of minutes in an hour. The number of hours in a day.	- Nick is looking at the amount of minutes in one hour and two hours. 1 hour $=60$ minutes 2 hours $=120$ minutes He says, "The amount of minutes are doubling each time. To find how many minutes are in 3 hours I will double 120 minutes." Is he correct? - True or false? There are more minutes in the day than there are hours. Explain why. - Kim says "If you are looking at a clock and adding 3 hours on, the minutes do not change". Is she correct? Prove it!	- Show all the different ways you can calculate how many hours are in 2 days. - Play pairs - create a set of cards with time facts. When two cards are turned over that equal the same length of time then that person wins those cards e.g. 24 hours 1 day Half a day 12 hours

	Compare measures and record the results using >, < and =. Order measures	- Complete the sentences using the following symbols <, > or = 30 ml 60 ml 1L jug Two half litre jugs 52L - Order the results from largest to smallest: $500 \mathrm{ml}, 750 \mathrm{ml}, 250 \mathrm{ml}, 1 \mathrm{~L}$ - Who has more pop?	- True or false? The taller a container is, the more liquid there is. Explain why you agree or disagree. - Work out these values: $\begin{aligned} & 40 \mathrm{ml}-20 \mathrm{ml}= \\ & 20 \mathrm{ml}-10 \mathrm{ml}= \\ & 10 \mathrm{ml}-5 \mathrm{ml}= \end{aligned}$ What do you notice about the answers? Why do you think this happening? - True or false? You can use both < and > if you are ordering 25 ml and 30 ml .	- Sahil, Marta \& John have 700 ml of pop between them. Sahil and John drink the same amount. Marta has 100 ml more than Sahil and John. How much do they all drink? - These 3 bottles each have more than 20 ml of water in but less than 50 ml . The green bottle has 5 ml more than the red bottle. The blue bottle has 10 ml more than the green bottle. How much could each bottle have in?

